


info@vortex-photonics.de www.vortex-photonics.de

Spiral Phase Plates / Vortex Lenses

Dimensions

mm

Specifications

Wavelengths: 193 to 1550 nm

Topological charges: m = 1 to 8, 16, 24, 32

Number of sectors: equal to topological charge

Number of steps: 64 per sector

Measured total depth: ±5 nm to theoretical

Material: fused silica

Coating: none, custom coating options

Applications

- Atomic and molecular excitation
- Optical tweezers and manipulations
- STED and MINFLUX microscopy
- Optical vortex coronographs
- Nano-Lithography
- Laser cutting and machining
- Data transfer

Part number information

V-532-20-8

Model	Wavele	ngth Spira	Spiral diameter		Topological charge	
V: Vortex Lens alia Spiral Phase Plate	i II		nm on a 21.8 x n substrate	m = 1 to 8, 1 or custom TO	, ,	

Application Notes

- 1) Ensure good quality of the original laser beam. We recommend:
 - a) a Gaussian beam profile (TEM00)
 - b) a high laser wavelength stability over time and power
- 2) Mount the vortex lens into a XY translation stage (best way to match the optical axis of the vortex lens)
 - a) The vortex lens can be placed into a 1 inch lens mount due to round corners
- 3) Expand the laser beam over the spiral structure of the vortex lens (<20 mm)
- 4) After the vortex lens: adjust the beam size to match your focusing optics
- 5) Avoid touching the surface of the vortex lens.
- 6) Always use laser safety goggles!

Version 2.1, January 2022 Page 1 of 1